Dr. Stefano Filipazzi Dr. Alapan Mukhopadhyay Léo Navarro Chafloque

EPFL, fall semester 2024 AG II - Schemes and sheaves

Solutions – week 5

We strongly advise the reader to go check the *blow-ups* document on moodle.

Exercise 3. Blow-ups

(1) We show that b induces an isomorphism

$$b \colon b^{-1}(U) \to U.$$

To see this, let $f \in I$ so that $D(f) \subset U$. Note that $I_f = R_f$. Therefore by the compatibility of Proj and pullbacks we have as in the example above

$$b^{-1}(U) = \operatorname{Proj}(\bigoplus_{n \geq 0} R_f) = \operatorname{Proj}(R_f[t]) = \operatorname{Spec}(R_f).$$

As U is covered by such D(f)'s the above map is locally an isomorphism and therefore an isomorphism.

(2) Note that I^n/I^2 is a free A-module of rank n+1 generated by x_0, \ldots, x_n . More generally I^n/I^{n+1} is a free A-a module generated by degree n-monomials. This leads to a graded isomorphism

$$\bigoplus_{n} I^{n}/I^{n+1} \cong A[x_{0}, \dots, x_{n}].$$

(3) We proof something more general.

Definition 0.1 (Regular sequence). Let R be a ring. A finite sequence of elements f_1, \ldots, f_n is said to be a regular sequence if f_i is a non-zero divisor in $R/(f_1,\ldots,f_{i-1})$ and $R/(f_1,\ldots,f_n)$ is non-zero.

We show the following.

Proposition 0.1. Let R be a ring and $I = (f_1, \ldots, f_n)$ where f_1, \ldots, f_n form a regular sequence. Then the kernel of the surjection sending Y_i to $f_i^{(1)}$

$$R[Y_1,\ldots,Y_n]\to\bigoplus_{n\geq 0}I^n$$

is given by the ideal $J = (f_i Y_i - f_j Y_i)$

Proof. We show this using two steps which both really heavily on the regular sequence hypothesis.

First, we show that the kernel of

$$R^n \to I$$

sending $e_i \mapsto f_i$ is generated by the vectors $e_i f_j - e_j f_i$. We proceed by induction on n the length of the regular sequence. For n = 0, 1the claim is obvious. To proceed inductively we define the chain complex K_n

$$R^{\binom{n}{2}} \to R^n \to R$$

with R placed in degree zero and differentials being respectively given by $e_{i,j} \mapsto f_j e_i - f_j e_i$ and $e_i \mapsto f_i$. Note that $H_0(K_n)$ of this complex is $R/(f_1, \ldots, f_n)$. and that the claim amounts to this complex being exact in the middle, meaning that $H_1(K_n) = 0$. Note that we also have the following exact sequence of complexes

Where the left vertical arrows are given by $e_{i,j} \mapsto e_{i,j}$ and $e_{i,j} \mapsto \delta_{n+1,j}e_i$. The middle vertical arrows are $e_i \mapsto e_i$ and $e_i \mapsto \delta_{i,n+1}$. The first right vertical arrow is the identity.

By induction $H_1(K_n) = 0$, and we want to show that $H_1(K_{n+1}) = 0$. The long exact sequence in homology gives

$$0 = H_1(K_n) \to H_1(K_{n+1}) \to R/(f_1, \dots, f_n) \xrightarrow{\delta} R/(f_1, \dots, f_n),$$

where δ is the connecting morphism. The connecting morphism is computed by following the red arrows on the diagram above. It is therefore given by $\delta = \cdot f_{n+1}$ the multiplication by f_{n+1} . As f_1, \ldots, f_{n+1} is a regular sequence δ is injective and therefore $H_1(K_{n+1}) = 0$.

We have now understood the degree 1 elements of the kernel of the surjection sending Y_i to $f_i^{(1)}$

$$R[Y_1,\ldots,Y_n]\to\bigoplus_{n\geq 0}I^n.$$

It now suffices to show that this kernel is generated by degree 1 elements.

Just for the rest of this proof, we call a polynomial $F \in R[Y_1, \ldots, Y_n]$ to be of weight i if i is the minimal integer such that $F \in (Y_1, \ldots, Y_i)$ but $f(Y_1, \ldots, Y_n) \notin (Y_1, \ldots, Y_{i-1})$. A weight 0 polynomial is defined to be 0.

This proposition will be shown as a special case (but the general case will be needed in the proof by induction) of the following.

Claim. Let $F \in R[Y_1, ..., Y_n]$ be an homogeneous polynomial of degree m with

$$F(f_1,\ldots,f_n)\in (f_1,\ldots,f_k).$$

Then there exists an homogeneous polynomial G of degree m and weight at most k such that $F - G \in (f_iY_j - f_jY_j)$. In particular if $F(f_1, \ldots, f_n) = 0$, then $F \in J = (f_iY_j - f_jY_j)$, showing the proposition.

We prove the claim by induction on the degree m of the polynomial. Let F be a polynomial of degree 1. Then

$$F(f_1,\ldots,f_n) = \sum_{i=1}^k a_i f_i.$$

Therefore the weight k and degree 1 polynomial $G = \sum_{i=1}^{k} a_i Y_i$ satisfies the claim: indeed F - G is an homogeneous polynomial of degree 1 with $(F - G)(f_1, \ldots, f_n) = 0$. Therefore using the first part of the proof above, we see that $F - G \in J$.

Now if F is a polynomial of degree m, we show the claim by induction on the weight l of F. If $l \leq k$, set F = G. Otherwise write $F = Y_l F_1 + F_2$ with F_1 homogeneous of degree m-1 and F_2 of weight at most l-1. Recall that by hypothesis

$$f_l F_1(f_1, \dots, f_n) + F_2(f_1, \dots, f_n) \in (f_1, \dots, f_k) \subset (f_1, \dots, f_{l-1})$$

and $F_2(f_1,\ldots,f_n)\in (f_1,\ldots,f_{l-1})$ because F_2 is of weight at most l-1 by construction. Modding out by f_1,\ldots,f_{l-1} and using that $f_1\ldots,f_l$ is a regular sequence we get that $F_1(f_1,\ldots,f_n)\in (f_1,\ldots,f_{l-1})$. We apply induction on the degree to get a polynomial G_1 of weight at most l-1 such that $F_1-G_1\in J$. Now set $G'=Y_lG_1+F_2$. This is a polynomial of weight at most l-1 because G_1 and F_2 are. Note also that $F-G'=Y_l(F_1-G_1)\in J$. Note also that $G'(f_1,\ldots,f_n)=F(f_1,\ldots,f_n)\in (f_1,\ldots,f_k)$. By induction on the weight there is a polynomial G of weight at most K such that K'-K'=K' but now K' but now K'

Exercise 4. Strict transforms.

(1) By definition the strict transform St_J is

$$\operatorname{Proj}(\bigoplus_{n\geq 0}(I+J)^n/J)$$

As the kernel of $I^n \to (I+J)^n/J$ is $I^n \cap J$ we see that we can realize the strict transform as the closed subscheme of Bl_I given by $V_+(\bigoplus_{n>0}I^n\cap J)$.

- (2) This is similar to exercise 3, point 1.
- (3) Let k be a field and consider $R = k[x_0, x_1]$, $I = (x_0, x_1)$ and $J = (x_1^2 (x_0^3 + x_0^2))$ which is a singular plane curve, which is the called the node. We compute the strict transform St_J . We claim that $\operatorname{St}_J \cong \mathbb{A}^1_k$ (which is regular) and that the blow-up map may be described as $\mathbb{A}^1_k \to C \subset \mathbb{A}^2_k$

$$\lambda \mapsto (\lambda^2 - 1, \lambda^3 - \lambda).$$

We use the standard charts, meaning that we see $\mathrm{Bl}_I \subset \mathbb{A}^2 \times \mathbb{P}^1$. Recall that this inclusion is induced by the surjection

$$k[x_0, x_1, Y_0, Y_1] \to \bigoplus_n I^n$$

sending Y_i to x_i in degree 1. We claim that the preimage of the ideal

$$V_+\left(\bigoplus_n I^n\cap J\right)$$

by the above map is given by $(H, (x_1Y_0 - x_0Y_1))$ where

$$H = (x_1^2 - (x_0^3 + x_0^2), x_1Y_1 - (x_0^2Y_0 + x_0Y_0), Y_1^2 - (x_0Y_0^2 + Y_0^2))$$

Indeed, for degree zero, one and two, these elements are sent to the generator of J (we have $I^n \cap J = J$ for $n \leq 2$).

We now argue that these generators are enough. Note that being in I^n for a polynomial means that the monomials forming it are at least of degree n. Being in J means that the polynomial is of the form $f(x_0, x_1)(x_1^2 - (x_0^3 + x_0^2))$ for an $f(x_0, x_1) \in k[x_0, x_1]$. So we see that if such an element $f(x_0, x_1)(x_1^2 - (x_0^3 + x_0^2))$ is in $I^n \cap J$, then $f(x_0, x_1) \in I^{n-2}$ counting the degrees of the monomials because $(x_1^2 - (x_0^3 + x_0^2)) \in I^2 \setminus I^3$. Therefore for $n \geq 3$ using the degree 2 generator and elements of I in degree 1, we can attain every element of $I^n \cap J$.

Therefore the strict transform is

$$Proj(A[x_0, x_1, Y_0, Y_1]/(H, x_0Y_1 - x_1Y_0)).$$

Denote by B the grading ring we are taking Proj of. Note that $V_+(H,x_0Y_1-x_1Y_0,Y_0)=\emptyset$, so that $V_+(H,x_0Y_1-x_1Y_0,Y_0)\subset D_+(Y_0)$ implying that

$$Proj(A[x_0, x_1, Y_0, Y_1]/(H, x_0Y_1 - x_1Y_0)) = Spec(B_{(Y_0)}).$$

But, if we write $\frac{Y_1}{Y_0}$ by y we get

$$B_{(Y_0)} = A[x_0, x_1, y]/(x_1^2 - (x_0^3 + x_0^2), x_1y - (x_0^2 + x_0), y^2 - (x_0 + 1), (x_0y - x_1))$$

$$\cong A[x_0, y]/(y^2 - (x_0 + 1)) \cong A[y].$$

Indeed using $x_0y=x_1$ the equation $x_1^2-(x_0^3+x_0^2)$ turn into $x_0^2(y^2-(x_0+1))$ and $x_1y-(x_0^2+x_0)$ turn into $x_0(y^2-(x_0+1))$ which are both subsumed by the equation coming from degree 2.

Therefore we see that the strict transform is isomorphic to \mathbb{A}^1 . By using that under this isomorphisms $x_0 \mapsto y^2 - 1$ and $x_1 \mapsto x_0 y = y^3 - y$ the claim about the form of the map follows.

Exercise 5.

We show the two lemmas mentioned in the exercise.

- (a) We first treat the affine case $\operatorname{Spec}(A)$. If $g \in A$ is zero in A_f the by definition of localization we get that there is some n such that $f^n g = 0$. Now if X is quasi-compact, we cover X by finitely many open affines $(U_i)_{i=1}^n$ and find n_i such that $f^{n_i}g$ is zero when restricted to the respective open affines. Taking $N = \max\{n_i\}$ concludes by the sheaf property.
- (1) We also first treat the affine case $X = \operatorname{Spec}(A)$. If $g \in A_f$ the there is some n > 0 such that $f^n g$ is the image of an element $a \in A$. Now if X admits a cover as in the hypothesis, then we can find a_i in $\Gamma(U_i, \mathcal{O}_{U_i})$ such that a_i restricted to $U_{i,f}$ is $f^{n_i}g$. Arranging n and a_i by suitably

multiplying by power of f to get that such that a_i restricts to f^ng on $U_{i,f}$. Now, $a_i-a_j\in \Gamma(U_i\cap U_j,\mathcal{O}_{U_i\cap U_j})$ restricts to zero on $(U_i\cap U_j)_f$. Therefore by item (a), there is some n_{ij} such that $f^{n_{ij}}(a_i-a_j)=0$ in $\Gamma(U_i\cap U_j,\mathcal{O}_{U_i\cap U_j})$. Again, up to multiplying by some suitable power N we can replace a_i 's so that they are compatible on intersections. Therefore by the sheaf property there is some $a\in\Gamma(X,\mathcal{O}_X)$ which satisfies what we want.